The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
In many applications, heterogeneous treatment effects on a censored response variable are of primary interest, and it is natural to evaluate the effects at different quantiles (e.g., median). The large number of potential effect modifiers, the unknown structure of the treatment effects, and the presence of right censoring pose significant challenges. In this paper, we develop a hybrid forest approach called Hybrid Censored Quantile Regression Forest (HCQRF) to assess the heterogeneous effects varying with high-dimensional variables. The hybrid estimation approach takes advantage of the random forests and the censored quantile regression. We propose a doubly-weighted estimation procedure that consists of a redistribution-of-mass weight to handle censoring and an adaptive nearest neighbor weight derived from the forest to handle high-dimensional effect functions. We propose a variable importance decomposition to measure the impact of a variable on the treatment effect function. Extensive simulation studies demonstrate the efficacy and stability of HCQRF. The result of the simulation study also convinces us of the effectiveness of the variable importance decomposition. We apply HCQRF to a clinical trial of colorectal cancer. We achieve insightful estimations of the treatment effect and meaningful variable importance results. The result of the variable importance also confirms the necessity of the decomposition.
translated by 谷歌翻译
多年来,Yolo系列一直是有效对象检测的事实上的行业级别标准。尤洛社区(Yolo Community)绝大多数繁荣,以丰富其在众多硬件平台和丰富场景中的使用。在这份技术报告中,我们努力将其限制推向新的水平,以坚定不移的行业应用心态前进。考虑到对真实环境中速度和准确性的多种要求,我们广泛研究了行业或学术界的最新对象检测进步。具体而言,我们从最近的网络设计,培训策略,测试技术,量化和优化方法中大量吸收了思想。最重要的是,我们整合了思想和实践,以在各种规模上建立一套可供部署的网络,以适应多元化的用例。在Yolo作者的慷慨许可下,我们将其命名为Yolov6。我们还向用户和贡献者表示热烈欢迎,以进一步增强。为了了解性能,我们的Yolov6-N在NVIDIA TESLA T4 GPU上以1234 fps的吞吐量在可可数据集上击中35.9%的AP。 Yolov6-S在495 fps处的43.5%AP罢工,在相同规模〜(Yolov5-S,Yolox-S和Ppyoloe-S)上超过其他主流探测器。我们的量化版本的Yolov6-S甚至在869 fps中带来了新的43.3%AP。此外,与其他推理速度相似的检测器相比,Yolov6-m/L的精度性能(即49.5%/52.3%)更好。我们仔细进行了实验以验证每个组件的有效性。我们的代码可在https://github.com/meituan/yolov6上提供。
translated by 谷歌翻译
连续深度神经网络,例如神经常规差分方程(ODES),近年来始终引起了机器学习和数据科学社区的大量兴趣,这弥合了深度神经网络和动态系统之间的连接。在本文中,我们介绍了一种新的连续深度神经网络,称为神经分段恒定延迟微分方程(PCDDE)。这里,与最近提出的神经延迟微分方程(DDES)的框架不同,我们将单个延迟转换为分段恒定的延迟。一方面,具有这种变换的神经PCDDE,在神经DDES中继承了通用近似能力的强度。另一方面,神经PCDDE,利用来自多个先前时间步骤的信息的贡献,进一步推广建模能力,而不会增加网络维度。通过如此促销,我们表明神经PCDDES在一维分段恒定延迟群体动态和现实世界数据集中的几个现有的连续深度神经框架,包括MNIST,CIFAR10和SVHN。
translated by 谷歌翻译
近年来,多智能体加固学习(Marl)在各种应用中呈现出令人印象深刻的性能。但是,物理限制,预算限制以及许多其他因素通常会在多代理系统(MAS)上施加\ Texit {约束},这不能由传统的Marl框架处理。具体而言,本文重点介绍受约束的Mase,其中代理工作\纺织{合作}在各种限制下最大化预期的团队平均成本下的预期团队平均返回,并开发一个名为DECOM的\ TEXTIT {约束合作MARL}框架,名为DECOM这样的苗条。特别是,DECOM将每个代理人的策略分解为两个模块,这使得代理商之间的信息共享,以实现更好的合作。此外,通过这种模块化,DREM的训练算法将原始约束优化分为奖励的无约束优化和成本的约束满足问题。然后,Decom以计算有效的方式迭代地解决这些问题,这使得DECOM高度可扩展。我们还提供了对Decom策略更新算法的融合的理论保障。最后,我们在玩具和大规模(有500个代理)环境中使用各种类型的成本验证了DECOM的有效性。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
Adversarial robustness assessment for video recognition models has raised concerns owing to their wide applications on safety-critical tasks. Compared with images, videos have much high dimension, which brings huge computational costs when generating adversarial videos. This is especially serious for the query-based black-box attacks where gradient estimation for the threat models is usually utilized, and high dimensions will lead to a large number of queries. To mitigate this issue, we propose to simultaneously eliminate the temporal and spatial redundancy within the video to achieve an effective and efficient gradient estimation on the reduced searching space, and thus query number could decrease. To implement this idea, we design the novel Adversarial spatial-temporal Focus (AstFocus) attack on videos, which performs attacks on the simultaneously focused key frames and key regions from the inter-frames and intra-frames in the video. AstFocus attack is based on the cooperative Multi-Agent Reinforcement Learning (MARL) framework. One agent is responsible for selecting key frames, and another agent is responsible for selecting key regions. These two agents are jointly trained by the common rewards received from the black-box threat models to perform a cooperative prediction. By continuously querying, the reduced searching space composed of key frames and key regions is becoming precise, and the whole query number becomes less than that on the original video. Extensive experiments on four mainstream video recognition models and three widely used action recognition datasets demonstrate that the proposed AstFocus attack outperforms the SOTA methods, which is prevenient in fooling rate, query number, time, and perturbation magnitude at the same.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译